SOCIO-ECONOMIC TIPPING POINTS in adaptation to climate change

prof.dr. Tatiana Filatova

Professor in Computational Economics, Faculty of Technology, Policy and Management, TU Delft Academic leader, Theme Climate Governance of the Delft Climate Action Program Program Leader, 4TU.Resilience Program 'DeSIRE', the Netherlands

Web: http://www.sc3.center/ Email: t.filatova@tudelft.nl Twitter: @TanjaFilatova

Thanks to the Team

Joos Akkerman

Brayton Noll

Jonas

Lechner

Alessandro Taberna

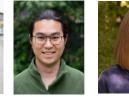
Liz Verbeek

Thorid Wagenblast

Asli Mutlu

Theodoros Chatzivasileiadis

Ignasi Cortes Arbues


& alumni

Puck

Merceij

Koen

Leila

Niamir

Hannah Muelder

Web: http://www.sc3.center/ Email: t.filatova@tudelft.nl Twitter: @TanjaFilatova

European Research Council (ERC) grant 758014, EU H2020 Programme

Saman van Duinen Ghaffarian de Koning

Sherman

Lee

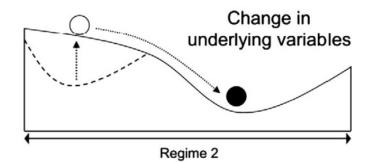
Ju-Sung Lee

Shaheen Abdulkareem

Netherlands Organisation for Scientific Research (NWO) grant #191.015, #17596 and #451-11-033

Outline

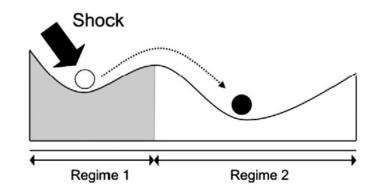
- . What is a tipping point?
- **I**. Tipping points in climate change adaptation
- II. Modeling methods to quantify tipping in social-economic systems under climate change:
 - Example 1: housing markets
 - A snapshot on other examples (regional economy & raising tides; social amplification of risks; stranded assets & financial implications)
- **IV.** Closing comments



I. Tipping Points & Climate change

- Ecology / Environmental sciences / Earth systems sciences
 - Generic theoretical foundations, with roots in dynamical systems theory, bifurcations (math), phase transitions (physics)
 - Relates to the "notion that a steady change in some control parameter... leads to a qualitative change in the system state when some [critical] threshold is passed" Lenton (2013)
 - Types: (1)

(1) bifurcation tipping;


(i.e. the attractor bifurcates, shifts abruptly)

Source: Crepin et al (2012); Lenton (2013)

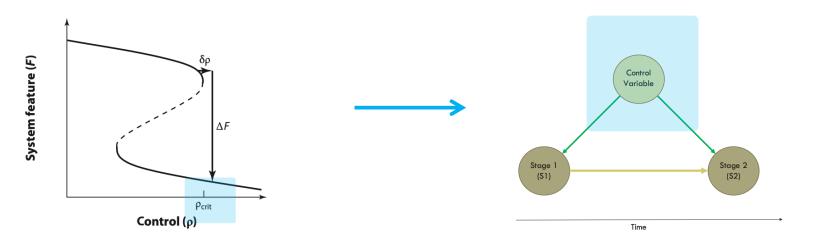
(2) noise-induced tipping...

(internal perturbation causes a shift to another regime)

Complex systems
Foreseeing tipping points
Marten Scheffer

Nature 467, 411-412(2010) | Cite this article

Tipping elements in the Earth's climate system


Timothy M. Lenton, Hermann Held, Elmar Kriegler, Jim W. Hall, Wolfgang Lucht, Stefan Rahmstorf, and Hans Joachim Schellnhuber

Check for

PNAS February 12, 2008 105 (6) 1786-1793; first published February 7, 2008 https://doi.org/10.1073/pnas.0705414105

I. Tipping Points & Climate change

- Ecology / Environmental sciences / Earth systems sciences
 - Generic theoretical foundations

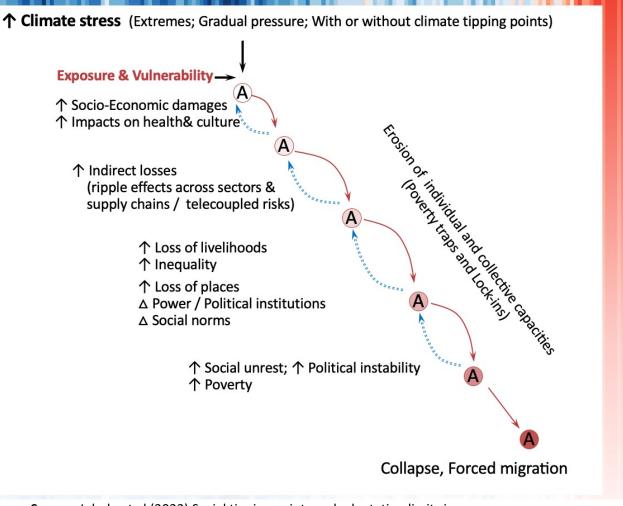
Complex systems
Foreseeing tipping points

Marten Scheffer

Nature 467, 411-412(2010) | Cite this article

Tipping elements in the Earth's climate system

Timothy M. Lenton, Hermann Held, Elmar Kriegler, Jim W. Hall, Wolfgang Lucht, Stefan Rahmstorf, and Hans Joachim Schellnhuber


PNAS February 12, 2008 105 (6) 1786-1793; first published February 7, 2008 https://doi.org/10.1073/pnas.0705414105

- Time series data, per **Tipping Element**
- Mechanisms identified
- And modelled

- Conceptualization of tipping in the socio-economic system are in infancy:
 - Aggregated data, a few years of observations
 - Likely no tipping that can be attributed to climate change (yet)
 - Mechanisms barely conceptualized; narratives mainly
 - Hardly any (time series) data on (micro) mechanisms
 - Formal models exist, but mainly outside the CC domain

Check for updates

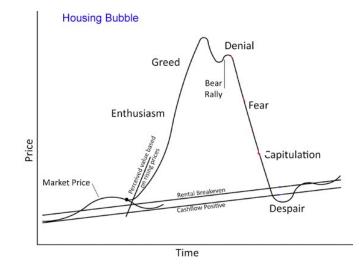
II. Social Tipping Points in climate change adaptation

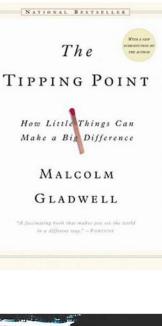
Source: Juhola et al (2022) Social tipping points and adaptation limits in the context of systemic risk..., **Frontiers in Climate**

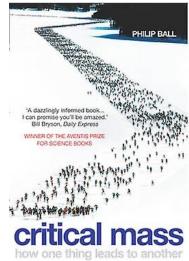
Disaster alone is insufficient

nature
ARTICLE (6). Check force Maga//Addary/10.1031//41467-020-20435-2 OPEN
Exposure to natural hazard events unassociated with policy change for improved disaster risk reduction
Daniel Nohrstedt⊚ ^{1,2≅,} Maurizio Mazzoleni ^{2,3} , Charles F. Parker⊙ ^{1,2} & Giuliano Di Baldassarre⊙ ^{2,3}

- Cascades / Systemic risks / Domino effect
- In 1 or more socio-economic Tipping Elements
 - On which empirical evidence exists; just not always in relation to CC
 - Models exists to explore the non-linear system dynamics
- Feedbacks
- Distributions of impacts, not averages

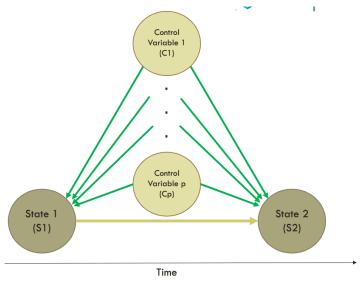

II. Socio-economic tipping points outside CC

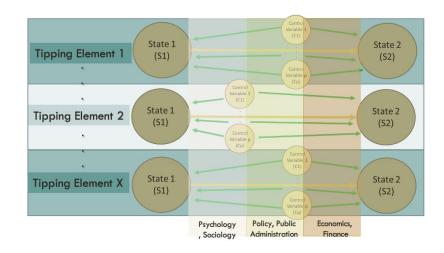

 A threshold at which small change in a driver leads to a runaway process driven by feedbacks, and triggers a drastic irreversible shift to a qualitatively new system state;


> Subjective judgements – Contagion (Diffusion) – Self-reinforcement feedbacks – Rapid acceleration

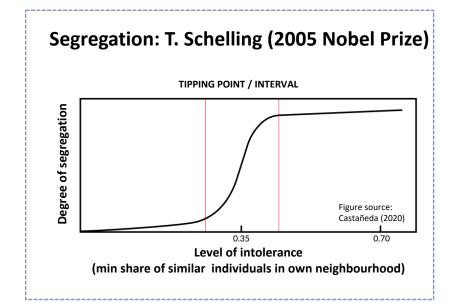
Delft

What are the different tipping elements & corresponding thresholds?

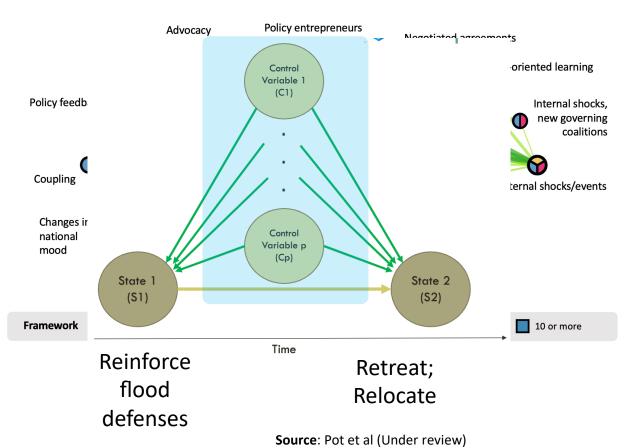

Is there (micro) data?

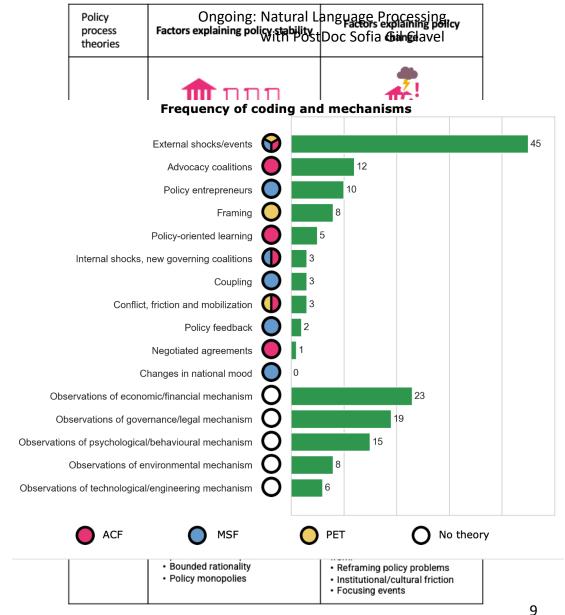

Can we include those in formal models?

II. Towards identifying mechanisms of tipping


- A threshold at which small change in a driver leads to a runaway process driven by feedbacks, and triggers a drastic irreversible shift to a qualitatively new system state;
- Analysis of tipping processes: macro phenomena as a function of changes in a driving factor

Theory-grounded mechanisms




Qualitative analysis & Natural Language Processing

Source: Gil-Clavel, Filatova (Under submission)

II. Towards identifying mechanisms of tipping

- Qualitative analysis: policy change mechanisms
- Cases: managed retreat & planned relocation (54 articles: 105 cases in 31 countries)
- 3 policy process theories

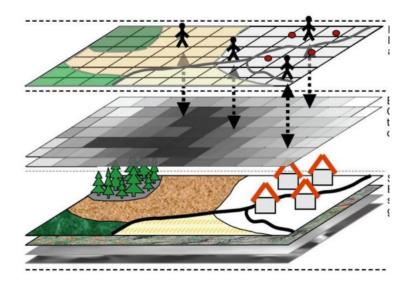
III. Modeling tipping in complex adaptive S-E systems

Progress in the past 10y

Model's ability to incorporate :

- 1. feedbacks (S ⇔ E, scales)
- 2. sources of regime shifts
- 3. complexity (scales, non-linearities, thresholds)
- 4. regime shift identification

Statistical models	System dynamics models
Equilibrium models	Agent based models

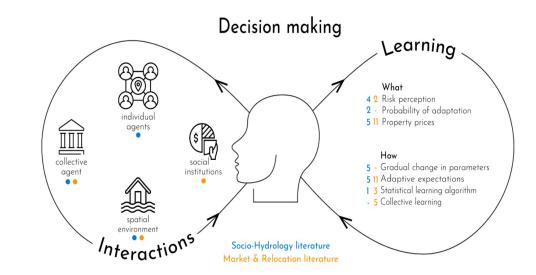

Table 8

Strengths and limitations of various modelling approaches for studying regime shifts. Notation: "\" means that a method can be used if a condition is satisfied, "-" denotes that it is impossible or difficult to apply a method when a condition is present, an empty cell implies neutrality.

Modelling context/conditions	Statistical	SD	EM (non-CGE)	EM (CGE)	ABM
Feedbacks					
one-way linkage	\checkmark			\checkmark	
chain of links				\checkmark	
feedback loops	-	\checkmark	\checkmark		\checkmark
Source of regime shift ^a :					
exogenous pulse disturbance	,		V	\checkmark	√
exogenous press disturbance	√.	√.	V		√.
endogenous gradual change	\checkmark	\checkmark	\checkmark		\checkmark
Complexity					
multiple scales (spatial/institutional)	-		_	\checkmark	√.
nonlinearity		√.			\checkmark
thresholds	\checkmark	\checkmark			
Regime shift identification					
detection	\checkmark				
temporal scales & reversibility		\checkmark	_	_	\checkmark
Availability of data					
time-series of aggregated environmental data	\checkmark			\checkmark	
time-series of aggregated socio-economic data	\checkmark			\checkmark	
disaggregated data					\checkmark
Treatment of a regime shift:					
test statistical difference between 2 regimes	\checkmark	-	_	-	_
reproduce a known regime	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
grow a potential regime shift	-	\checkmark	\checkmark	-	\checkmark
a simple comparison of scenarios	-			\checkmark	
Relation to stakeholders:					
stakeholders are (or could be) actively involved in modelling	-	\checkmark	\checkmark	-	√
state institutions issue contract research (macro analysis)	\checkmark			\checkmark	
Simplification vs. high computing demands:					
simplified assumptions	\checkmark	\checkmark	\checkmark	\checkmark	
access to computing power and data analysis methods	V				\checkmark
agents adaptive behaviour and learning	-			-	V
heterogeneity	-	_	-	_	√
out-of-equilibrium dynamics and path-dependence		\checkmark		_	V
explicit spatial representation		_	_	-	

III. Agent-based modeling

 Computational agent-based modeling: "a computerized simulation of a number of decision-makers (agents) and institutions, which interact through prescribed rules" (Farmer and Foley, Nature 460, 685–686, 2009)



Socio-economic system:

Individual choices, perceptions, learning and adaptation; social interactions; markets and social institutions.

Climate-induced hazards: Probability and severity of a hazard in each location

Spatial system: Land use and cencus data

Source: Taberna et al (2020) 'Tracing resilience, social dynamics and behavioral change: a review of agent-based flood risk models', SESMO

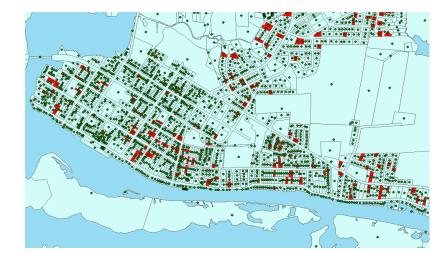
Source: Figure is adapted and modified following Leyk et al (2009)

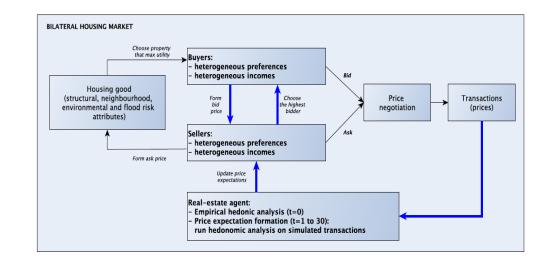
UDelft

III. Individual risk perceptions & market institutions

• Repetitive floods

III. Individual risk perceptions & market institutions


- Repetitive floods
 - Stylized fact 1: amenities vs. risks
 - Stylized fact 2: evolution of risk perception
 - $P_{hazard} < P_{safe} (4-10\%)^1$
 - Effect increases after a flood (in 2-3 times)²
 - Even if disaster did not hit actually³
 - Effect disappears 5-6 years after the event⁴
 - Stylized fact 3: climate change and urbanization
 - Non-marginal change (outmigration; sorting)⁵
 - Change of hedonic price function (flood discount → CBA & risk management policy)
- RQ: When do behavioral changes matter on macro?



has recently been reduced by 50% ... '

III. RHEA: Risks and Hedonics in Empirical Agent-based housing market

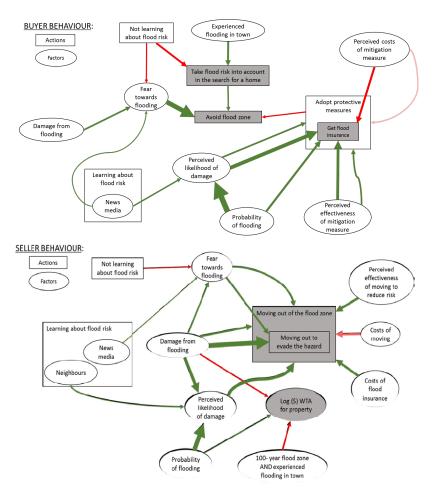
 $\ln Y = \alpha + \sum_{i} \beta_{i} x_{i} + \sum_{i} \gamma_{j} z_{j} + \sum_{k} \phi_{k} f_{k} + \varepsilon$

 $\varepsilon = \lambda W \varepsilon + u$.

- Theory: Urban Economics
- Buyers & Sellers: location choices; bidding under bounded rationality; memory;
- Real estate agents: expectations formation (Hedonic analysis)
- Data (Qual & Quant)
 - GIS; Census;
 - Market data (17 years, 2 floods)
 - Semi structured interviews (behavioral rules of traders; sequence of actions; interactions; learning)
 - Auction

NWO VENI

PhD project of Koen de Koning


III. Behavioral rules: choices under risk & learning

• Household survey¹:

NWO VENI

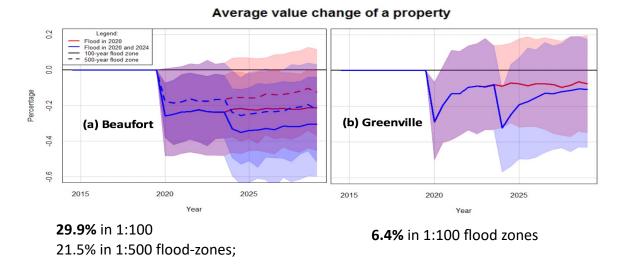
- 8 US coastal states in 2018 (after Harvey), N=1040
- Protection Motivation Theory (Rogers, 1975)
- Feeling of fear (Slovic, 2004)

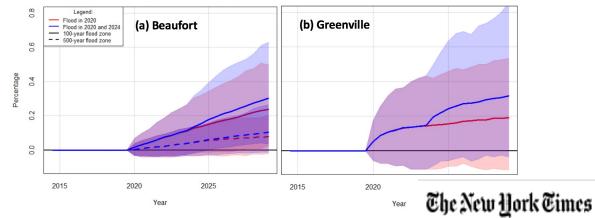
Threat appraisal - Perceived probability - Perceived severity	 Behavior intention (buyers) Consider flood zone Avoid flood zone Live in flood zone & buy insurance Offer lower bid
Coping appraisal - Response efficacy - Self-efficacy - Response costs	 Behavior intention (sellers) Move out of flood zone Move out because of hazard Offer lower ask price

Effect size for each factor: red -,

green +; thickness

- Buyers: effect of fear 4 times stronger than the 'rational' cognitive processes
- Sellers: leave flood zones if experiencing damage (5 times > likely) and fear (2 times)


III. Flood-prone housing markets shifting regimes

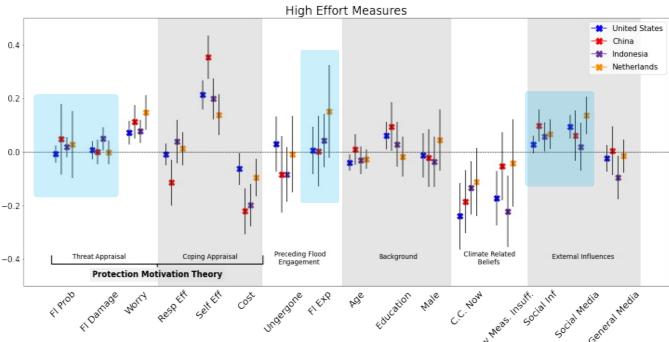

Florida Sees Signals of a Climate-Driven

Housing Crisis

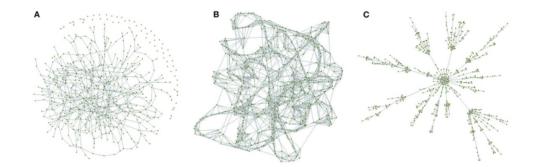
- Collapse of a local housing market under repetitive hazards
 - 1 flood vs 2 repetitive floods in 4 years (before memory fades)

Change in poverty (households earning below \$ 24.563)

Non-marginal structural change:


- Market expectations change as fear propagates
- Low-income households trapped
- Low-income households are outpriced from safety
- Path dependency & social segregation

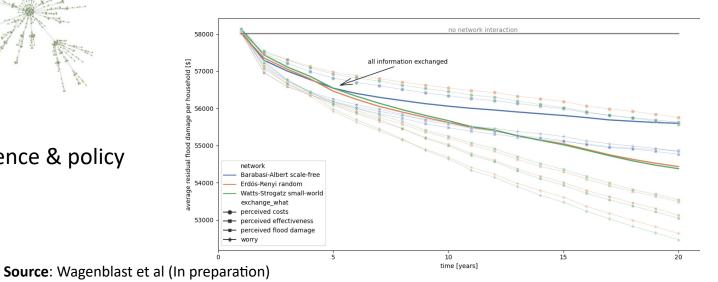
- **Social Norms** (PhD project Thorid Wagenblast)
 - Social amplification of risk



Effects from Bayesian beta regression models contained in 95% credible intervals

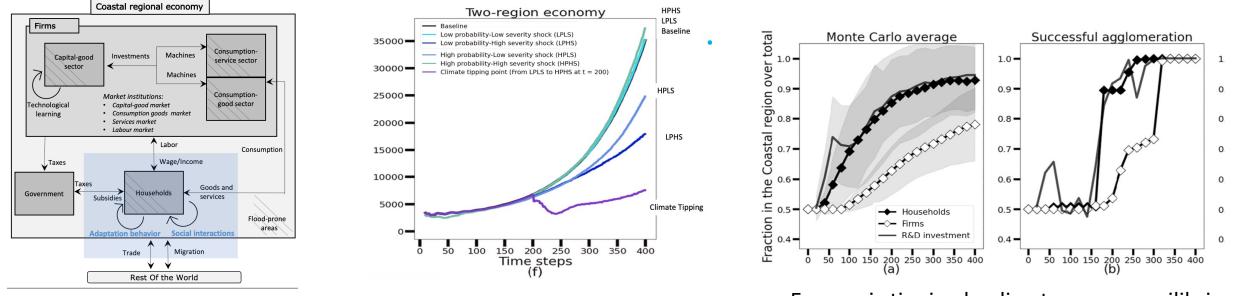
- Longitudinal Household Surveys (N~6,400)
 - Protection Motivation Theory
 - Changes in perceptions, social influence, self-assessed resilience
 - Experiencing events; Choice experiments on relocation

- **Social Norms** (PhD project Thorid Wagenblast)
 - Social amplification of risk
 - Diffusion of adaptation practices



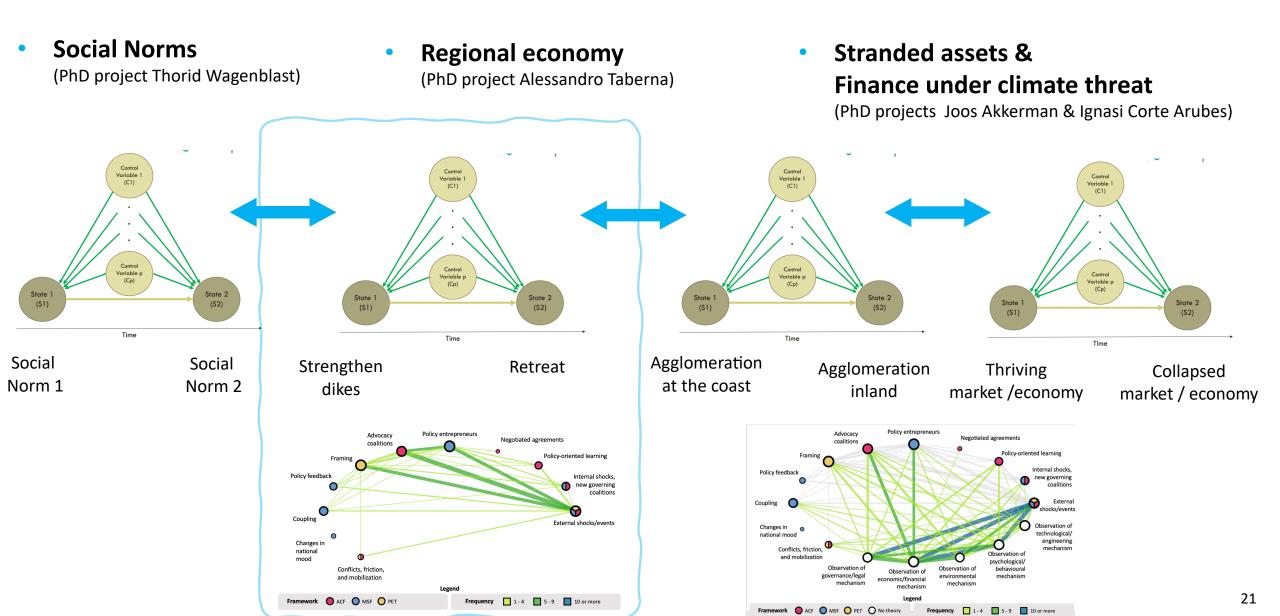
- The 5th wave of the survey: social influence & policy
- ABM & Social Networks
- ABM & Acceptability of policies

Source: Noll et al (2021) "Contextualizing cross-national patterns in household climate change adaptation" **Nature Climate Change**, 1-6



18

- Regional economy (PhD project Alessandro Taberna)
 - Location of Households & Firms
 - Agglomeration ⇔ Climate change
 - Collapse/Not of a regional economy


Economic tipping leading to a new equilibria

- Stranded assets & Finance (PhD project Joos Akkerman)
 - Climate risk disclosure & stranded assets (assets that might unexpectedly devalue prior to their economic lifetime)
 - Damage \rightarrow Long term slow down of economies
 - Financial systemic risks (the risk of an entire financial system/market collapse instead of just its isolated component that is containable without harming the entire system)

- Economic & Finance under climate threat (PhD project Ignasi Corte Arubes)
 - Evolution of Debt to GDP ratio with/without adaptation
 - Dynamics in Credit ranking due to climate imapcts

IV. Let's not shy away from modeling socio-economic tipping points

- Work across disciplines to identify relevant Tipping Elements in social systems
- Data: need to "borrow" from non-climate social tipping processes as the observation time is too short to find it in the past years/decades
- Mechanisms
 → Quantifying outcomes space in models that can accommodate bifurcations & other non-marginal change ; Integration of different models / Theories from dif disciplines (mechanisms)
- Mechanisms for social tipping in Mitigation vs Adaptation: same or not?
- Beyond eyeballing & uncertainty ranges alone: clear (statistical) identification of tipping points
- Lessons learned from TP journey in Ecology/ Earth Systems Science, incl. identification, early warning signals